Various Methods of Groupby Plots
Data
import numpy as npimport pandas as pddf = pd.DataFrame({'category': list('XYZXY'),'sex': list('mfmff'),'ThisColumnIsNotUsed': range(5,10)})dfcategory sex ThisColumnIsNotUsed0 X m 51 Y f 62 Z m 73 X f 84 Y f 9
Using crosstab
pd.crosstab(df['category'],df['sex']).plot.bar()
Using groupby+unstack:
(df.groupby(['sex','category']) .count().unstack('sex').plot.bar())
Using pivot_table:
pd.pivot_table(df,index = 'category', columns = 'sex',aggfunc ='count').plot.bar()
Using seaborn:
import seaborn as snssns.countplot(data=df,x='category',hue='sex')or,sns.catplot(data=df,kind='count',x='category',hue='sex')
output
![enter image description here]()